124 research outputs found

    Dispersion of Mass and the Complexity of Randomized Geometric Algorithms

    Get PDF
    How much can randomness help computation? Motivated by this general question and by volume computation, one of the few instances where randomness provably helps, we analyze a notion of dispersion and connect it to asymptotic convex geometry. We obtain a nearly quadratic lower bound on the complexity of randomized volume algorithms for convex bodies in R^n (the current best algorithm has complexity roughly n^4, conjectured to be n^3). Our main tools, dispersion of random determinants and dispersion of the length of a random point from a convex body, are of independent interest and applicable more generally; in particular, the latter is closely related to the variance hypothesis from convex geometry. This geometric dispersion also leads to lower bounds for matrix problems and property testing.Comment: Full version of L. Rademacher, S. Vempala: Dispersion of Mass and the Complexity of Randomized Geometric Algorithms. Proc. 47th IEEE Annual Symp. on Found. of Comp. Sci. (2006). A version of it to appear in Advances in Mathematic

    Lower Bounds for the Average and Smoothed Number of Pareto Optima

    Get PDF
    Smoothed analysis of multiobjective 0-1 linear optimization has drawn considerable attention recently. The number of Pareto-optimal solutions (i.e., solutions with the property that no other solution is at least as good in all the coordinates and better in at least one) for multiobjective optimization problems is the central object of study. In this paper, we prove several lower bounds for the expected number of Pareto optima. Our basic result is a lower bound of \Omega_d(n^(d-1)) for optimization problems with d objectives and n variables under fairly general conditions on the distributions of the linear objectives. Our proof relates the problem of lower bounding the number of Pareto optima to results in geometry connected to arrangements of hyperplanes. We use our basic result to derive (1) To our knowledge, the first lower bound for natural multiobjective optimization problems. We illustrate this for the maximum spanning tree problem with randomly chosen edge weights. Our technique is sufficiently flexible to yield such lower bounds for other standard objective functions studied in this setting (such as, multiobjective shortest path, TSP tour, matching). (2) Smoothed lower bound of min {\Omega_d(n^(d-1.5) \phi^{(d-log d) (1-\Theta(1/\phi))}), 2^{\Theta(n)}}$ for the 0-1 knapsack problem with d profits for phi-semirandom distributions for a version of the knapsack problem. This improves the recent lower bound of Brunsch and Roeglin

    The Hidden Convexity of Spectral Clustering

    Full text link
    In recent years, spectral clustering has become a standard method for data analysis used in a broad range of applications. In this paper we propose a new class of algorithms for multiway spectral clustering based on optimization of a certain "contrast function" over the unit sphere. These algorithms, partly inspired by certain Independent Component Analysis techniques, are simple, easy to implement and efficient. Geometrically, the proposed algorithms can be interpreted as hidden basis recovery by means of function optimization. We give a complete characterization of the contrast functions admissible for provable basis recovery. We show how these conditions can be interpreted as a "hidden convexity" of our optimization problem on the sphere; interestingly, we use efficient convex maximization rather than the more common convex minimization. We also show encouraging experimental results on real and simulated data.Comment: 22 page
    • …
    corecore